Determining Interactivity Enriching Features for Effective Interactive Learning Environments

Mrinal Patwardhan

Roll No.: 10438805 IDP in Educational Technology IIT Bombay, Mumbai 400076.

December 05th, 2016

under guidance of Prof. Sahana Murthy

Interactive Learning Environments (ILEs)

Interactive Learning Environments (ILEs)

Interactive Learning Environments (ILEs)

Do learners learn from ILEs?

Especially beneficial for learning scientific concepts, processes, principles (Hansen, 2005; Rutten et al., 2011, Cook, 2006)

Promote deeper and clear understanding of the domain knowledge (Lengler and Eppler,2007)

Foster students' analytical skills, challenges their creativity, abstract thinking and reasoning abilities (Chaturvedi, 2006; Vidal, 2006, Part et al., 2008)

Do learners learn from ILEs?

•Inconsistent results; learning success is not overwhelming (Kombartzky, 2007).

 higher level of interaction <u>could not</u> <u>guarantee positive learning effects</u> (Boucheix & Schneider, 2009)

•Interactions <u>may just provoke students to</u> <u>play</u> with different dynamic objects forgetting the real meaning (Guzman, Dormido, and Berenguel, 2010).

•deep learning is not promoted unless <u>careful</u> <u>consideration is given to interactive</u>

features (Moreno, & Valdez , 2005)

Do learners learn from ILEs?

Mixed and conditional results

•Inconsistent results; learning success is not overwhelming (Kombartzky, 2007).

 higher level of interaction <u>could not</u> <u>guarantee positive learning effects</u> (Boucheix & Schneider, 2009)

•Interactions <u>may just provoke students to</u> <u>play</u> with different dynamic objects forgetting the real meaning (Guzman, Dormido, and Berenguel, 2010).

•deep learning is not promoted unless <u>careful</u> <u>consideration is given to interactive</u>

features (Moreno, & Valdez , 2005)

Overarching Research Issue

Under what conditions, ILE leads to effective learning?

Exploring Interactive Learning Environments

* Quadrat-ullah, 2010

Possible solution approaches in ILEs

Solution approach selected for the study

Interactions and Interactivity in ILEs

Interactions and Interactivity in ILEs

Interactions and Interactivity in ILEs

• learners' behaviour depends on the action of the system, which in turn depends on the reaction of the learner, and so on (Domagk et al., 2010)

Synthesizing Literature Survey

Learning process of Interactive Learning Environment and its basic stake-holders

Link

Synthesizing Literature Survey

Interactions in ILEs

Literature Synthesis to Research Questions

Literature Synthesis to Research Questions

What will be 'carefully designed' interactions?

Exploring through an associated Research Issue: Cognitive Processing of learners

Triarchic model of cognitive load (Mayer, 2009)

Synthesizing Literature Survey

Cognitive processing in ILEs

Need to augment Interactivity in ILEs?

Multimedia principles and Cognitive Load Theory of Multimedia learning →guidelines for designing support to learners while learning from ILE (Mayer, 2008).

However, the recommendation primarily fulfil design requirements for Information delivery and Representation Strategy Interactions.

There is a dearth of such recommendations for designing Content Manipulation Interactions, especially needed in Interactive Simulations.

Proposing 'Interactivity Enriching Features' (IEFs) in ILE

Proposing 'Interactivity Enriching Features (IEFs)'

 'Interactivity Enriching Features' (IEFs) are conceptualized as interaction features in ILE offered to user in the form of an affordance.

• IEFs can take form of **add-on features** added to the basic level of interactivity present in ILE.

• The features are referred to as 'Interactivity Enriching Features', as it is anticipated that these features would enrich the quality of interactions.

Determining Interactivity Enriching Features (IEFs)

- 1. Define generalized pedagogical requirements (as specified in Learning Objectives)
- 2. Identify learning demands that can be put up on learner in ILE while meeting these pedagogical requirements.
- 3. Search the Knowledge Database (Educational Theories, Learning Theories, Learning Principles) to establish mapping between the learning demands and theoretical recommendations.
- 4. Define IEFs by establishing mapping between learning demands and theoretical recommendations.

Generalized	Expected learning	What an IEF should	Theoretical	Proposed
pedagogical	demands on learners	do?	recommendations selected	IEF
requirements	in ILEs		from the Knowledge	
•			Database	
Why an IE	F is needed?	What features an IEF	How is IEF formulated?	
		should have?		
				Productively
				Constrained
			1	Variable
				Manipulation
				PCVM
			f -	
			1	Permutative
				Variable
				Manipulation
				PVM
				D: // /
				Discretized
				Interactivity
				Manipulation
				DIM
			-	Decinacentics
				Reciprocanve
				Dynamic Linking
			1	DDI
				KDL

Generalized	Expected learning	What an IEF should	Theoretical	Proposed		
pedagogical	demands on learners	do?	recommendations selected	IEF		
requirements	in ILEs		from the Knowledge			
			Database			
Why an IEF is needed?		What features an IEF	How is IEF formulated?			
		should have?				
To build up the whole	To manage the	To otter variable	Tool-mediated Learning: To	Productively		
knowledge by mastering	manipulation of	manipulation for	offering tool-mediated	Constrained		
its individual knowledge	variables aligned	progressive learning	productive constraint to attain	Variable		
chunks and interlinked	with the learning	combined with	the desired learning objective	Manipulation		
concepts	goals	unguided exploration	(Podolefsky, Moore &	PCVM		
		experience	Perkins, 2013)			
To flexibly use and apply	To mentally	To offer an interaction	Congruence principle	Permutative		
algorithms, procedures in	visualize of all	that can facilitate	extended for manipulation	Variable		
line with the learning	possible	flexibility in applying	interactions: to establish	Manipulation		
objectives	permutations/ 'what-	procedures.	congruence between	PVM		
	if scenario' while		manipulation interactions and			
	executing a		the intended learning			
	procedural task		objectives (Tversky,			
			Morrison, & Bétrancourt,			
			2002)			
To comprehend and	To develop a	To offer interactivity	Event Cognition: To learn a	Discretized		
relate multiple steps in a	discretized mental	that facilitates	complex procedural task by	Interactivity		
given procedural task at	model of the	learners to get access	means of meaningful	Manipulation		
the granularity of sub-	continuous event/	to the discrete	segmented events (Kurby &	DIM		
steps to be followed for	task to be	individual steps of the	Zacks, 2007).			
its execution	accomplished.	tasks while its				
		execution.				
To translate from one	To visualize and	To allow	Distributed and embodied	Reciprocative		
MER to another MER	relate mentally the	manipulation of all	cognition: to facilitate actions	Dynamic		
and to integrate different	reciprocal relation	the required	like manipulations for	Linking		
representations	between	representations	promoting integration of	RDL		
integration	representations		MERs (Glenberg, Witt &			
MER: Multiple External			Metcalfe, 2013)			
Representation						

Interactivity Enriching Features designed

Link

Refining Research Questions

Refining Research Questions

Refining Research Questions

Research Scope

- Students learn from ILE in self-learning mode. (Instructor support is not being considered as a variable).
- Interactions being considered are only those between ILE and learner. The interactions between instructor and learner or among learners are excluded from the scope of this research work.
- ILEs are overall well-designed to begin with, i.e. ILEs are in accordance with the well-established multimedia learning principles and are aligned with learning objectives.
- Variation in the learner characteristics or customization of learning material as per this variation are not being considered as variables of this research work.

Research Context: ILEs in 'Signals and Systems' Education

- Signals and Systems, a course second year from Electrical Engineering and allied undergraduate programs.
- One of the foundation courses in the field of Communication and Signal Processing.
- Findings from Signals and Systems Concept Inventory (SSCI) and supporting disciplinary research articles were referred while determining pedagogical requirements and topics of research studies.

Overview of the research design

General Overview of the procedure followed for Validating the effectiveness of Interactivity Enriching Features

Validating the effectiveness of Interactivity Enriching Features: Research experiments to answer RQ1

Research Experiments	E1			E	2	E	3
Research Method	Quantitat	tive research		Quantitativ	ve research	Quantitative research	
Research Context	Signal Tra	ansformation	I	Convolution		Fourier Transform Properties	
Research Design	Quasi experiment with 'post test only'			Two group Quasi experiment with 'pre-test post- test'		Two group Quasi experiment with 'pre-test post- test'	
Sample	Second year Electrical Engineering students (N=41+ 35+23 resp.)			Second year Electrical Engineering students (N=70+71 resp.)		Second year Electrical Engineering students (N=36+ 35 resp.)	
Treatment	Non-Interactive Learning Environment (Non-ILE)	Animation (ANM)	Simulation (SIM)	Animation (ANM)	Simulation (SIM)	Animation (ANM)	Simulation (SIM)
Data Collection	Pc	ost test	-	Pre-test ar	nd post-test	Pre-test and post-test	
Instruments	Validated peer-reviewed test Instrument fo r UC, UP and AP link			Validated peer-reviewed test Instrument for AC, UP and AP link		Validated peer-reviewed test Instrument for AC, UP and AP link	
Statistical Analysis methods	Independent Sample t test, ANOVA, Kruskal Wallis test, Mann-Whitney test			Independent Sample t tes ANCOVA	st, Paired Sample t test,	Independent Sample t tes	st, Paired Sample t test

Answering RQ1

Research Experiments	E1	E2	E3
Results and	Non-ILE \approx ANM \approx SIM (UC)	$ANM \approx SIM (AC)$	ANM > SIM (AC)
findings	Non-ILE > ANM~SIM (UP)	ANM ≈ SIM (UP)	ANM ≈ SIM (UC)
	Non-ILE≈SIM ≈ ANM (AP)	ANM ≈ SIM (AP)	ANM ≈ SIM (AP)
	link	link	link

Research Question RQ1: Does higher level of interaction improve learning in ILE?

```
Answering RQ 1 :
```

➢ Higher level of interaction does not necessarily lead to effective learning in ILE.

➢ Different knowledge types and cognitive levels require different level of interaction for effective learning in ILE.

Validating the effectiveness of Interactivity Enriching Features: Research experiments to answer RQ 2

Research Experiments	E	1	E	4	E5		
Research Method	Mixed Research Meth	od	Mixed Research Method	Ł	Mixed Research Method		
	(Explanatory sequent	ial design)	(Explanatory sequential	design)	(Explanatory sequential	design)	
Research Context	Signal Transformatior	1	Convolution		Time and Frequency domain representation of sinusoids		
Research Design	Two group Quasi experiment with 'post test only'		Two group Quasi exper only'	riment with 'post test	Two group Quasi experiment with 'post test only'		
Sample	Second year Electrical Engineering students (N=23+35 resp.)		Second year Electrical E (N=33+34 resp.)	Engineering students	Second year Electrical Engineering students (N=12+12 resp.)		
Treatment	Simulation (SIM) (ILE without IEF)	Interactivity Enriched ILE (IELE) [PCM+PCVM]	Simulation (SIM) (ILE without IEF)	Interactivity Enriched LE(IELE) [DIM]	Simulation (SIM) (ILE without IEF)	Interactivity Enriched LE(IELE) [RDL]	
Data Collection	Post test + <u>screen capture + semi-</u> <u>structured interviews</u>		Post test+ CL test <u>+ survey + semi-structured</u> interviews		Post test+ CL test+ <u>survey + semi-structured</u> interviews + screen capture		
Instruments	Validated peer-reviewed test Instrument for UC, UP and AP link		Validated peer-reviewed test Instrument for AC, UP and AP link		Validated peer-reviewed test Instrument for AC, UP and AP link		
Statistical Analysis methods	Independent Sample test, Mann-Whitney te	t test, Kruskal Wallis est	Independent Sample t test		Independent Sample t test		

Answering RQ2

Research Experiments	E1	E4	E5
Results and	SIM ≈ IELE (UC)	SIM ≈ IELE (AC)	SIM ≈ IELE (UC+AC)
findings	IELE>SIM (UP)	IELE> SIM (UP)	IELE>SIM (AP)
	IELE>SIM (AP)	IELE>SIM (AP)	IELE>SIM (ANP)
	link	link	link

Research Question RQ2:

How do Interactivity Enriching Features affect students' learning outcome?

Answering RQ 2:

Interactivity in ILE can lead to higher learning only after getting augmented by strategically designed Interactivity Enriching Features (IEFs) for Apply and Analyze Procedural knowledge.

Validating the effectiveness of Interactivity Enriching Features: Research experiments to answer RQ 3

Research Experiments	E	4	E	5		
Research Method	Mixed Research Method		Mixed Research Method			
	(Explanatory sequential desig	gn)	(Explanatory sequential desig	n)		
Research Context	Convolution		Time and Frequency domain representation of sinusoids			
Research Design	Two group Quasi experimen	t with 'post test only'	Two group Quasi experiment	with 'post test only'		
Sample	Second year Electrical Engin (N=33+34 resp.)	eering students	Second year Electrical Engineering students (N=12+12 resp.)			
Treatment	Simulation (SIM)	Interactivity Enriched LE	Simulation (SIM)	Interactivity Enriched		
	(ILE without IEF)	(IELE)	(ILE without IEF)	LE(IELE)		
		[DIM]		[RDL]		
Data Collection	Post test+ CL test+ survey +	semi-structured interviews	Post test+ CL test+ survey + semi-structured interviews +			
			screen capture			
Instruments	Validated peer-reviewed test Instrumen	t for AC, UP and AP <u>link</u>	Validated peer-reviewed test Instrument for AC, UP and AP link			
Statistical Analysis methods	Independent Sample t test		Independent Sample t test			

Answering RQ3

Research Experiments	E4	E5
Results and findings	Mental effort scores SIM ≈ IELE Germane Cognitive Load scores (measured construct Mental difficulty) SIM ≈ IELEAC, SIM > IELEUP, SIM > IELEAP <u>link</u>	Mental effort scores SIM \approx IELEGermane Cognitive Load scores (measured constructMental difficulty)SIM \approx IELEUC+AC, SIM > IELEAP, SIM > IELEANPlink

Research Question RQ3:

What is the effect of including Interactivity Enriching Features on students' cognitive load?

Answering RQ3:

Learners learning with (IELE) designed with 'Interactivity Enriching Features' (IEFs) exhibited same mental effort (indication of equal Intrinsic Cognitive Load), but lower perceived mental difficulty level (indication of higher Germane Cognitive Load) as compared to learners learning from the ILEs without IEFs.

IEFs supported learners by improving their Germane Cognitive Load.

Summarizing findings

Claims	Findings as evidence
Higher level of interaction does not necessarily lead to effective learning in ILE.	a) For procedural knowledge at understand level, non-interactive visualization performed better than animation and simulation. The animation and Simulation were found to be equally effective.
Different knowledge types and cognitive levels require different level of interaction for	b) For conceptual knowledge at apply level, simulation was found to be better than animation.
effective learning in ILE.	(Based on experiments in three different topics in S&S)
ILE can lead to higher learning only after getting augmented by strategically designed Interactivity Enriching Features (IEFs).	Learners performed better with Interactivity Enriched Learning Environment (IELE) using 'Interactivity Enriching Features' (IEFs) as compared to the ILEs without IEFs. When augmented with appropriate IEF, ILEs could deliver its learning benefits, especially for procedural knowledge for given cognitive levels.
	(Based on experiments in three different topics in S&S)
Interactive Simulation designed with 'Interactivity Enriching Features' improves learning in ILE by fostering Germane Cognitive Load.	Learners learning with Interactivity Enriched Learning Environment (IELE) using 'Interactivity Enriching Features' (IEFs) exhibited same mental effort (indication of equal Intrinsic Cognitive Load), but lower perceived mental difficulty level (indication of higher Germane Cognitive Load) as compared to learners learning from the ILEs without IEFs.
	(Based on experiments in two different topics in S&S)

OVERALL CLAIM: The findings from the research studies validated learning effectiveness of IEFs.

Discussion

Investigating learning effectiveness of IEFs and their impact on cognitive processing		Presenting findings in the form of model: MIELE	
Extent of Li generalizability	imitations	Future directions	

Presenting thesis findings as MIELE

Extent of Generalizability

Generalizability of the IEFs

- role of domain in the designing of IEFs has been low, while the role of a particular interaction designed for manipulating variables is prominent.
- the designing of IEFs derived its basis from relevant educational theories with pan-domain applicability
- Generalizability of claims about testing effectiveness of IEFs
 - Generalizable for specific types of knowledge from courses with similar pedagogical requirement for engineering student population
- Factors such as learner age and learner characteristics would need further investigation.

Domain	Торіс	Features of the topic> pedagogical requirements> cognitive support	IEFs used
	Signal	Exploration of multiple variables> intentional exploration of multiple variables> support for progressive learning	PCVM Productively Constrained Variable Manipulation
Signals and Systems	Transformation	Sequential procedural task> Analyzing impact of sequencing the steps in a procedural task>support for creating expected permutations	PVM Permutative Variable Manipulation
	Convolution	Multi-step procedural task> mastering individual sub-steps to accomplish the whole procedural task > support for comprehending a continuous event as a series of discrete events	DIM Discretized Interactivity Manipulation
	Signal Representation	Multiple External Representations> need to develop cross-representational linkage among MERs> support for being able to experience reciprocal relations between/ among MERs.	RDL Reciprocative Dynamic Linking

repics with the same features from Features of lopics with the same features from the same the other domains the topic domain (Signals and Systems) Fourier Transform properties Expromation of → Discrete Time Signal Processing multiple (Variables: different signals and different transform Design digital filters using pole-zero → variables properties to be learnt) placement → LTI system characterises IIR and FIR filter designing → (Variables: Inputs signals, Pole-zero plots and frequency properties like linearity and time response invariance) → Sampling and aliasing Exploring Z plane and S plane (variables: pole location / zero location as a function of coordinates) Control Systems → Sampling and reconstruction of signals in time/ Bode servo analysis frequency domain Root Locus of a transfer function (Variables: signals frequency, sampling frequency, designing of open loop and closed reconstruction filter cut-off frequency) loop systems Frequency response from S/Z plane for pole zero → → PID controller position (Variable: location of poles and zeros) Various applications in speech and image → Fourier Series Representation of a square wave processing based on the fundamental (Variables: number of harmonics, amplitude and phase topics from Signals and Systems . of the harmonics to be added) Discrete Time Signal Processing Spectrum Analysis **→** Sequential → Verification of systems for linearity and time → Commutativity property of procedural task invariance properties convolution (Sequencing in Time invariance verification; output for delayed input and delayed output) → Commutativity property of systems Multi-step Plotting Frequency response of an LTI system Discrete Time Signal Processing procedural task Constructing Butterfly diagram → Plotting spectral representation → FIR/ IIR filter designing → Equalizer designing Multiple Exploring Z plane and S plane Discrete Time Signal Processing External (MERs: pole location / zero location in S plane and Z → Pole-zero plots and frequency Representations plane) response → Sampling and reconstruction of signals in time/ → Bode servo analysis frequency domain → Root Locus of a transfer function (MERs: sampled signals in time domain and spectra of sampled signal in frequency domain). Control Systems → Frequency response from S/Z plane for pole zero Bode servo analysis position Root Locus of a transfer function (MERs: location of poles/zeros and Frequency → designing of open loop and closed response plotted) loop systems → PID controller

Establishing generalizability of the IEFs

Topic: Mapping from S plane to Z plane

Learning Objectives:

After interacting with this learning environment, learner will be able to :

•establish relation between s plane and z plane

•translate a given pole-zero location in the s plane to its appropriate location in Z plane and vice versa

Recommended Interactivity Enriching Features: RDL, PCVM

Topic: Mapping from S plane to Z plane

Learning Objectives:

After interacting with this learning environment, learner will be able to :

•establish relation between s plane and z plane

•translate a given pole-zero location in the s plane to its appropriate location in Z plane and vice versa

Recommended Interactivity Enriching Features: RDL, PCVM

Limitations of the Thesis

- The results from this thesis need to be considered along with the following limitations.
 - Learner characteristics: Learner characteristics has not been a confounding variable considered.
 - Instructor and instructional strategies: Contribution of instructor's role has been kept outside this thesis.
 - Sample: Demographic details of the sample have assumed to be non-influential on the findings.
 - Domain and educational settings: The basic premises and assumptions might not hold true for school level (other than tertiary level educational setting) educational set-up.
 - Research Methods
 - the treatments given were of short duration nature
 - Assessment of lower cognitive levels
 - Use of self-reported cognitive load subjective rating scale.
 - IEFs need not be the only solution approach

Future Directions

"Creating learner-centric, technology-enabled effective learning environment that is capable of fully utilizing its potential to offer the most enriched learning experience to learners"

- Validating IEFs for more topics from associated domains
- Validating IEFs for additional learner characteristics
- Validating IEFs in the presence of internal/external instructional strategies
- Investigating IEFs' effectiveness for higher cognitive levels

Thesis Contributions

- The concept of Interactivity Enriching Features and characterizing its role in learning from ILEs.
- Four Interactivity Enriching Features: Determine, design and evaluate IEFs for interactive animations and simulations. The thesis contributed by conceiving and defining attributes of these IEFs.
 - Permutative Variable Manipulation (PVM)
 - Productively Constrained Variable Manipulation (PCVM)
 - Discretized Interactivity Manipulation (DIM)
 - Reciprocative Dynamic Linking (RDL)
- Five empirical studies to test effectiveness of IEFs
- Interactivity Design Principles
- Interactivity Enriched Learning Environments (IELE)
- Integrated perspective of IEF designing and its learning impact in ILEs in the form of three-layer Model for Interactivity Enriched Learning Environment (MIELE):
- eIDT: Enriched Interactivity Design Tool
- Validated instruments

Publications

Journal Publication

- Patwardhan, M., & Murthy, S. (2015). When does higher degree of interaction lead to higher learning in visualizations? Exploring the role of "Interactivity Enriching Features". Computers & Education, 82, 292–305. doi:10.1016/j.compedu.2014.11.018
- Conference Publications
 - Patwardhan M., S. Murthy, "How Reciprocative Dynamic Linking Supports Learners' Representational Competence: An Exploratory Study ", Proceedings of 23rd International Conference on Computers in Education, Hangzhou, China, November-December 2015.
 - Banerjee G., Patwardhan M., S. Murthy, "Learning Design Framework for Constructive Strategic Alignment with Visualizations", Proceedings of 22nd International Conference on Computers in Education, Nara, Japan, November- December 2014.
 - Banerjee G., Patwardhan M .& Mavinkurve M. (2013), "Teaching with visualizations in classroom setting: Mapping Instructional Strategies to Instructional Objectives", Proceedings of 5th IEEE International Conference on Technology for Education (T4E), IIT Kharagpur.
 - A. Diwakar, M. Patwardhan and S. Murthy, "Pedagogical Analysis of Content Authoring tools for Engineering Curriculum", selected for paper publication at "International Conference for Technology for Education (T4E) 2012" at IIIT Hyderabad, July 2012.
 - M. Patwardhan and S. Murthy, "Teaching-learning with interactive visualization: How to choose the appropriate level?," 2012 IEEE International Conference on Technology Enhanced Education (ICTEE), pp. 1-5, Jan. 2012.
- Journal paper Manuscript under review (Second revised version of the paper has been submitted on November 5th, 2016)
 - Patwardhan, M., & Murthy, S. (2016), "Designing Reciprocative Dynamic Linking to improve learners' Representational Competence in Interactive Learning Environments submitted to Research and Practice in Technology Enhanced Learning (RPTEL)

Table 5.1. Mean and standard deviations of the test score for experiment E1

Question category	Non-interactive Learning Environment (Non-ILE)		Animation (ANM)		Simulation (SIM)		Interactivity Enriched Learning Environment (IELE)	
	N=41		N=35		N=23		N=35	
	М	SD	М	SD	М	SD	М	SD
Understand Conceptual knowledge	7.97	2.09	7.52	2.04	6.81	2.56	7.24	2.49
Understand Procedural knowledge	5.73	3.63	3.43	3.98	3.04	2.92	5.86	3.93
Apply Procedural knowledge	3.86	2.99	3.14	2.28	3.91	1.99	5.57	3.08

Table 5.2. Results of Mann-Whitney U test for experiment E1

Experimental Groups	Understand Conc knowledge	ceptual	Understand Proc knowledge	edural	Apply Procedural knowledge		
	Mann-Whitney U	р	Mann-Whitney U	р	Mann-Whitney U	р	
Non-ILE and ANM	632.500	0.321	485.000	0.010	638.500	0.395	
Non-ILE and SIM	356.000	0.073	284.000	0.004	433.500	0.582	
Non-ILE and IELE	607.500	0.209	699.500	0.840	473.000	0.010	
ANM and SIM	347.500	0.324	397.500	0.931	315.000	0.145	
ANM and IELE	582.500	0.698	413.000	0.013	313.500	0.000	
SIM and IELE	370.000	0.575	242.000	0.006	249.500	0.013	

Table 5.5 Mean and standard deviations of the test score for Experiment E2

		Animation (ANM)						Simulation (SIM) N=70				
Question category	Pre-test	Pre-test Scores Post-test Scores		Gain = Post-test score -pre- test score		Pre-test Scores		Post-test Scores		Gain = Post-test score - pre- test score		
	М	SD	М	SD	М	SD	М	SD	М	SD	М	SD
Apply Conceptual knowledge	6.71	2.42	7.23	2.39	0.52	1.66	4.24	2.89	5.86	2.75	1.62	2.39
Understand Procedural knowledge	9.72	1.67	10.00	-	0.28	1.67	9.71	1.68	10.00	-	0.29	1.68
Apply Procedural knowledge	0.38	0.16	5.02	1.94	4.64	1.97	0.22	0.22	4.97	1.78	4.75	1.77

	Animation (ANM) N=35				Simulation (SIM) N=36							
Question category	Pre-test	Scores	Post Sco	-test res	Gai Post score test s	in = t-test -pre- score	Pre-test	Scores	Post Sco	-test res	Gair Post- score - test se	n = test · pre- core
	М	SD	М	SD	М	SD	М	SD	М	SD	М	SD
Understand Conceptual knowledge	5.29	4.19	9.14	2.57	3.86	3.85	4.86	3.68	8.19	2.96	3.33	3.59
Apply Conceptual knowledge	5.76	2.33	8.86	1.80	3.10	2.92	5.42	2.77	7.69	2.74	2.27	2.62
Apply Procedural knowledge	3.88	2.00	6.02	1.72	2.14	1.73	3.87	2.21	6.88	2.16	3.01	2.12

Table 5.6 Mean and standard deviations of the test scores for Experiment E3

Table 6.1 Mean and standard deviations of the Domain knowledge performance test score for experiment E4

	Domain knowledge Performance Test Score					
Question category	Simulati	on (SIM)	Interactivity Er Environm	Interactivity Enriched Learning Environment (IELE)		
	N	=33	N	N=34		
	М	SD	M	SD		
Understand Procedural knowledge	8.33	3.68	9.85	1.85		
Apply Conceptual knowledge	3.13	2.34	3.33	2.96		
Apply Procedural knowledge	3.74	1.95	5.17	2.40		

Table 6.3 Mean and standard deviations of the cognitive load scores for experiment E4

	Self-reported difficulty level (germane cognitive load) scores					
Question category	Sim	ulation (SIM) N=33	Interactivity Enriched Learning Environment (IELE) N=34			
	M	SD	M	SD		
Understand Procedural knowledge	3.61	1.28	2.74	1.42		
Apply Conceptual knowledge	4.97	1.55	4.71	1.66		
Apply Procedural knowledge	6.61	1.48	5.26	2.70		

Table 6.3 Mean and standard deviations of the cognitive load scores for experiment E4

	Self-reported difficulty level (germane cognitive load) scores					
Question category	Sim	ulation (SIM)	Interactivi	Interactivity Enriched Learning		
			Envi	ronment (IELE)		
		N=33	N=34			
	M	SD	M	SD		
Understand Procedural knowledge	3.61	1.28	2.74	1.42		
Apply Conceptual knowledge	4.97	1.55	4.71	1.66		
Apply Procedural knowledge	6.61	1.48	5.26	2.70		

Table 6.4 Affective Domain ratings

Treatment Groups	Affective Domain Ratings		
	М	SD	
Simulation(SIM) N=33	3.97	0.57	
Interactivity Enriched Learning Environment (IELE) N=34	4.25	0.41	

Table 7.2 Mean scores and standard deviations of the Domain Knowledge Performance Test Score for experiment E5

Domain Knowledge Performance Test Score				
Simula	tion (SIM)	Interactivity Enriched		
		Learning Environment		
		(IELE)		
1	N=12	N=12		
М	SD	М	SD	
4.48	2.16	6.20	1.94	
6.37	1.18	7.11	1.34	
5.17	2.65	8.44	1.99	
	Dor Simula M 4.48 6.37 5.17	M SD 4.48 2.16 6.37 1.18 5.17 2.65	Domain Knowledge Performance T Simulation (SIM) Interactive Learning I (II N=12 N M SD M 4.48 2.16 6.20 6.37 1.18 7.11 5.17 2.65 8.44	

Table 7.3 Mean scores and standard deviations of the cognitive load scores for experiment E5

	Self-reported difficulty level (germane cognitive load) scores					
Question category	Simula	tion (SIM)	Interactivity Enriched Learning Environment			
	1	N=1 2	(IELE) N=12			
	М	SD	M	SD		
Category I (Apply Procedural knowledge)	5.58	1.24	4.27	1.27		
Category II (Understand + Apply Conceptual knowledge)	5.25	1.71	4.55	1.73		
Category III (Analyze Procedural knowledge)	6.08	1.68	4.36	2.06		

Qualitative Findings for E1

Figure 5.3. Simulation Exploration Trajectory Representation

Student's response (verbatim)	Coding categories
"this applet allows only single option" " It shows one step at a time"	Feature
"one at a time and then you go for everything makes strong foundation blocks" "visualizing signal transformation becomes easy with this (applet), if one is not able to visualize"	Reason
" incremental learning helps" " PDF version will be enough for basic understanding, simulation explains how to solve problems	Learning impact

Table 5.3 Coding categories and corresponding responses for experiment E1

Qualitative Findings for E4

Number of steps taken while solving problems and percentage of number of students

Q2: How entertaining was it to learn about graphical convolution to day? : Entertaining

Q3: How eager would you be to learn about some different topic from Signals and Systems in the same conditions you learned today?: Eager

Q4: How motivating was it to learn about graphical convolution today? Very motivating

Q5: How much did the JAVA applet help you to understand about graphical convolution?: Very much

Q6: How helpful was this JAVA applet for learning about Graphical helpful

Qualitative Findings for E5

Figure 7.3 Exploration pattern observed from screen capture analysis

Figure 7.4. Translation process shown in the answer sheet

Feature impact:

......"we are just back testing whatever changes we are seeing, are we are able to get the same changes mathematically back after changing this".....

....."It works as a good rechecking for myself that if I have understood the concept like I can try to predict that if I move the right one in which direction or vice versa how it should work, so it's a way of checking myself".......

..... "with this, we will be able to find relations between all these.... it will simplify lot of things".....

......"when one changes, the other has effects on it...... it creates a a..... like chain when more representations are there".....

Learning pattern:

......"It's basically when one of them moves, I like to observe this one is increasing and what's happening to the next one, increasing or decreasing, that pattern I like to remember"......

..... Choosing anyone.....so choose one and make changes over there see what changes happen in corresponding one then you can go for the second one..... make changes over

there, then see.

Learning preferences:

... that would also be better because frequency domain ...we can correlate frequency and time domain simultaneously, so if both go hand in hand then that--that would also be a better option and this helps the equation, like the equation we have to think about what will be the Sin or Cos Sin wave or the waveform"......

...."if second changes and we need to find the changes in first then, uh, if the second option is selected then I will have to think it reverse, so it is difficult for me to you know think in other way. Okay......So if direct option is given to change in second and see the changes in first then that is obviously better.

....."if I understand, I don't need both ways manipulation.....one is also enough and sufficient"....

Different levels of interactions (Schulmeister, 2003)

Interaction Level	Screenshot of example	Interaction Level	Screenshot of example			
Viewing static picture, still images, no interaction	$y(0) = \int x(\tau)h(-\tau) d\tau$ Then, we file one of the waveforms about the y-axis. $x(0)$ $+ \frac{1}{2} + \frac{1}{2}$	Manipulating visualization contents through different interaction features				
Viewing video, visualization that includes play, pause, stop, repeat, rewind, speed control	$y(0) = \int_{-\infty}^{\infty} x(\tau)h(-\tau) d\tau$ Then, we flip one of the waveforms about the y-axis. $x(\tau)$ (τ) $h(\tau)$ $x(\tau)$ $h(\tau)$ $x(\tau)$ $h(\tau)$ $x(\tau)$ $h(\tau)$ $h(\tau)$ $x(\tau)$ $h(\tau)$ $h(\tau)$ $h(\tau)$	Allows generating visualizations through programs, data, model building				
Permits control functions such as viewing order (changing the order / sequence of viewing), zooming, rotating (no change in	90 00 and 00 an	Receiving feedback on manipulations of visual objects virtual /remote labs for engineering applications	Image: state of the s			
content) Lower level of interaction → a behaviourist character; higher level of interaction →constructivist learning						

What does literature say about ILE learning?

Highlights of the Research streams

Research Stream-I Establishing learning potential learning success \rightarrow inherent features of dynamic depiction and exploration affordance

Research stream-II Failure in confirming the learning potential of ILE Changing nature of ILE learning effectiveness.
learning effectiveness became a multidimensional construct

Research stream-III Conditional Learning in ILEs

- The notion of 'moderators' in ILE got introduced
- more divergent RQs emerged. Such as "whys," "whens," and "for whoms" in addition to whethers" and "how muchs."

Categorizations of Interaction Features in ILE

Categorization of interaction features in ILE was done and the following overarching categories were created

PCVM: Productively Constrained Variable Manipulation

• It restricts the number of variables to be offered for manipulation simultaneously; yet allows full exploration opportunities.

•This ensures that learner uses all the exploration and learning opportunities provided in ILE.

•In spite of forcing learner to manipulate variables in a constrained manner, it is a 'productive constraint' as it will aid the learning process and will foster learning by aligning instructor's learning objectives with the exploration pattern of learner in an interactive simulation.

DIM: Discretized Interactivity Manipulation

•It allows learner to execute a given task / process / procedure in the form of discretized steps to strengthen internal mental representation of the task.

• Learning sciences related to Event Cognition report that while learning a given process/ event, generally learners construct an internal mental representation composed in several discrete steps.

•As per DIM, ILE can offer interactivity that enables learner to select individual steps discretely, thus creating a discretized mental model of the continuous event/ task to be accomplished.

PVM: Permutative Variable Manipulation

While learning procedural knowledge in ILE, this affordance will enable learner to make decisions about sequencing the steps of procedural task (i.e. all possible permutations) to improves learning.

Embedding Permutative variable as an additional interactive feature will be useful for allowing number of permutations of action sequences especially while executing a procedural task. Due to PVM, learner will be able to see what change takes place in the outcome of the process due to change in the order of the steps (or different permutations).

RDL: Reciprocative Dynamic Linking

It is an affordance offered to select and manipulate each of the multiple external representations individually in a reciprocative manner.

While learning from Dynamically Linked Multiple Representations (DLMR), RDL will offer design interactivity using Reciprocative Dynamic Linking (RDL) feature which allows learners to manipulate both (or more) DLMRs in a reciprocative manner.

Credits